Cationic Switchable Lipids: pH-triggered Molecular Switch for siRNA Delivery


Authors: W. Viricel, S. Poirier, A. Mbarek, R.M. Derbali, G. Mayer and J. Leblond

Journal: Nanoscale

DOI: 10.1039/C6NR06701H

Publication - Abstract

November 21, 2016

Abstract

A pH-sensitive molecular switch able to change its conformation upon protonation at endosomal pH values is embedded into the structure of cationic lipidoid materials, thus conferring endosomal escape properties. Involvement of the conformational switch in the endosomal escape process was confirmed and leading material identified was able to induce efficient gene knockdown both in vitro and in vivo. The lipid nanoparticles reported here are promising for therapeutic applications and this work could serve as a template for future design of stimulus-responsive (ionic, redox, light) molecular switch for drug and gene delivery.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Summary

An Orthogonal Array Optimization of Lipid-like Nanoparticles for mRNA Delivery in Vivo

B. Li, X. Luo, B. Deng, J. Wang, D.W. McComb, Y. Shi, K.M.L. Gaensler, X. Tan, A.L. Dunn, B.A. Kerlin and Y. Dong

Although messenger RNA (mRNA) therapeutics are useful for transiently expressing antibodies and proteins, antigen-specific immune responses make the systemic delivery of mRNA challenging.

Read More


Publication - Abstract

The promise of gene therapy for the treatment of cystic fibrosis has yet to be fully clinically realized despite years of effort toward correcting the underlying genetic defect in the cystic fibrosis transmembrane conductance regulator (CFTR).
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.