Construction of a Macrophage-Targeting Bio-nanocapsule-Based Nanocarrier


Authors: H. Li, M. Somiya, K. Tatematsu, and S. Kuroda

Journal: Drug Delivery Systems

DOI: 10.1007/978-1-4939-9798-5_16

Publication - Abstract

August 22, 2019

Abstract

The construction protocol of bio-nanocapsule (BNC)-based nanocarriers, named GL-BNC and GL-virosome, for targeted drug delivery to macrophages is described here. First, genes encoding the Streptococcus sp. protein G-derived C2 domain (binds to IgG Fc) and Finegoldia magna protein L-derived B1 domain (binds to Igκ light chain) are prepared by PCR amplification. Subsequently, the genes encoding hepatic cell-specific binding domain of hepatitis B virus envelope L protein are replaced by these PCR products. The expression plasmid for this fused gene (encoding GL-fused L protein) can be used to transform Saccharomyces cerevisiae AH22R− cells. To obtain GL-BNC, the transformed yeast cells are disrupted with glass beads, treated with heat, and then subjected to IgG affinity column chromatography followed by size exclusion column chromatography. In addition, GL-BNCs can be fused with liposomes to form GL-virosome. The targeted delivery of GL-BNC and GL-virosome to macrophages can be confirmed by in vitro phagocytosis assays using the murine macrophage cell line RAW264.7.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Summary

The potency of drug delivery systems can heavily rely on their ability to penetrate poorly vascularized tissues such as tumors, following intravenous administration. The drug delivery vehicle’s size greatly impacts this phenomenon.

Read More


Publication - Abstract

The microfluidic technique has emerged as a promising tool to accelerate the clinical translation of nanoparticles, and its application affects several aspects, such as the production of nanoparticles and the in vitro characterization in the microenvironment, mimicking <...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.