Microfluidic-Based Manufacture of siRNA-Lipid Nanoparticles for Therapeutic Applications


Authors: C. Walsh, K. Ou, N.M. Belliveau, T.J. Leaver, A.W. Wild, J. Huft, P.J. Lin, S. Chen, A.K. Leung, J.B. Lee, C.L. Hansen, R.J. Taylor, E.C. Ramsay and P.R Cullis

Journal: Methods in Molecular Biology

DOI: 10.1007/978-1-4939-0363-4_6

Publication - Abstract

February 03, 2014

Abstract:

A simple, efficient, and scalable manufacturing technique is required for developing siRNA-lipid nanoparticles (siRNA-LNP) for therapeutic applications. In this chapter we describe a novel microfluidic-based manufacturing process for the rapid manufacture of siRNA-LNP, together with protocols for characterizing the size, polydispersity, RNA encapsulation efficiency, RNA concentration, and total lipid concentration of the resultant nanoparticles.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Engineering Caveolae-Targeted Lipid Nanoparticles To Deliver mRNA to the Lungs

Q. Li, C. Chan, N. Peterson, R.N. Hanna, A. Alfaro, K.L. Allen, H. Wu, W.F. Dall'Acqua, M.J. Borrok and J.L. Santos

Efficacious use of therapeutic gene delivery via nanoparticles is hampered by the challenges associated with targeted delivery to tissues of interest. Systemic administration of lipid nanoparticle (LNP)-encapsulated mRNA leads to a protein expressed predominantly in the liver and...
Read More


Publication - Abstract

Despite the wide therapeutic potential of RNA interference (RNAi), clinical progress has been slow with only a few examples of successful translation. Efficient knockdown of hepatic transthyretin (87%) in patients with transthyretin amyloidosis las...

Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.