Sesquiterpene-Loaded Co-Polymer Hybrid Nanoparticle Effects on Human Mast Cell Surface Receptor Expression, Granule Contents, and Degranulation


Authors: N. Arizmendi, H. Qian, Y. Li and M. Kulka

Journal: Nanomaterials

DOI: 10.3390/nano11040953

Publication - Abstract

April 08, 2021

Biodegradable polymeric nanoparticles (NPs) such as poly(lactic-co-glycolic acid) (PLGA) and polyvinyl alcohol (PVA) have been used as drug delivery systems for natural and synthetic compounds and are designed to control the loading and release of biodegradable materials to target cells, tissues, and organs. Eremophilane-type sesquiterpenes have anti-inflammatory properties but are lipophilic, cytotoxic, and not biocompatible with many cells. To determine whether biodegradable PLGA/PVA could improve the biocompatibility of sesquiterpenes, sesquiterpene-loaded NPs were synthesized and their effects on human mast cells (LAD2), the major effector cells of allergic inflammation, were determined. NPs composed of PLGA/PVA and two types of sesquiterpenes (fukinone, PLGA/PVA-21 and 10βH-8α,12-epidioxyeremophil-7(11)-en-8β-ol, PLGA/PVA-22) were produced using a microfluidic synthesis method. The NPs’ size distribution and morphology were evaluated by dynamic light scattering and cryogenic transmission electron microscopy (TEM). PLGA/PVA-21 and PLGA/PVA-22 were 60 to 70 nm and were readily internalized by LAD2 as shown by flow cytometry, fluorescence microscopy, and TEM. While unencapsulated sesquiterpenes decreased LAD2 cell viability by 20%, PLGA/PVA-21 and PLGA/PVA-22 did not alter LAD2 viability, showing that encapsulation improved the biocompatibility of the sesquiterpenes. PLGA/PVA-21 and PLGA/PVA-22 decreased the expression of genes encoding the subunits of the high affinity immunoglobulin E receptor (FcεR1α, FcεR1β, FcεR1γ) and the stem cell factor receptor (Kit,), suggesting that hybrid NPs could alter mast cell responses to antigens and shift their maturation. Similarly, PLGA/PVA-21 and PLGA/PVA-22 inhibited tryptase expression but had no effect on chymase expression, thereby promoting a shift to the tryptase-positive phenotype (MCT). Lastly, PLGA/PVA-21 and PLGA/PVA-22 inhibited mast cell degranulation when the LAD2 cells were activated by IgE crosslinking and FcεRI. Overall, our results suggest that PLGA/PVA-21 and PLGA/PVA-22 alter human mast cell phenotype and activation without modifying viability, making them a more biocompatible approach than treating cells with sesquiterpenes alone.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Emerging therapeutic treatments based on the production of proteins by delivering mRNA have become increasingly important in recent times. While lipid nanoparticles (LNPs) are approved vehicles for small interfering RNA delivery, there are still challenges to use this formulation...
Read More


Publication - Abstract

The paper demonstrates PNI's mRNA-LNP as highly capable of inducing strong levels of upregulation in target genes with activation levels six to nine fold dependent on amount of gRNA packaged. The paper validates the SAM system in mice as a suitable in vivo model encompassing both...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.