Micro-Spherical Cochleate Composites: Method Development for Monodispersed Cochleate System


Authors: L. Nagarsekar, M. Ashtikar, F. Steiniger, J. Thamm, F.H. Schacher and A. Fahr

Journal: Journal of Liposome Research

DOI: 10.3109/08982104.2016.1149865

Publication - Abstract

May 12, 2016

Abstract:

Cochleates have been of increasing interest in pharmaceutical research due to their extraordinary stability. However the existing techniques used in the production of cochleates still need significant improvements to achieve sufficiently monodispersed formulations. In this study, we report a simple methodfor the production of spherical composite microparticles (3-5 μm in diameter) made up of nanocochleates from phosphatidylserine and calcium (as binding agent). Formulations obtained from the proposed method were evaluated using electron microscopy and small angle X-ray scattering and were compared with conventional cochleate preparation techniques. In this new method, an ethanolic lipid solution and aqueous solution of a binding agent is subjected to rapid and uniform mixing with a microfluidic device. The presence of high concentration of organic solvent promotes the formation of composite microparticles made of nanocochleates. This simple methodology eliminates elaborate preparation methods, while providing a monodisperse cochleatesystem with analogous quality.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

CD8+ T Cells Mediate Protection Against Zika Virus Induced by an NS3-based Vaccine

A.E. Ngono, T. Syed, A.V. Nguyen, J.A. Regla-Nava, M. Susantono, D. Spasova, S. Shresta et. al.

Read More


Publication - Abstract

The ability to control chemical functionality is an exciting feature of modern polymer science that enables precise design of drug delivery systems. Ring-opening polymerization of functional monomers has emerged as a versatile method to prepare clinically translatable degradable ...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.