Publication - Abstract
Nov 30, 2020
International Journal of Pharmaceutics
December 04, 2019
The aim of this work was to assess the impact of solvent selection on the microfluidic production of liposomes. To achieve this, liposomes were manufactured using small-scale and bench-scale microfluidics systems using three aqueous miscible solvents (methanol, ethanol or isopropanol, alone or in combination). Liposomes composed of different lipid compositions were manufactured using these different solvents and characterised to investigate the influence of solvents on liposome attributes. Our studies demonstrate that solvent selection is a key consideration during the microfluidics manufacturing process, not only when considering lipid solubility but also with regard to the resultant liposome critical quality attributes. In general, reducing the polarity of the solvent (from methanol to isopropanol) increased the liposome particle size without impacting liposome short-term stability or release characteristics. Furthermore, solvent combinations such as methanol/isopropanol mixtures can be used to modify solvent polarity and the resultant liposome particle size. However, the impact of solvent choice on the liposome product is also influenced by the liposome formulation; liposomes containing charged lipids tended to show more sensitivity to solvent selection and formulations containing increased concentrations of cholesterol or pegylated-lipids were less influenced by the choice of solvent. Indeed, incorporation of 14 wt% or more of pegylated-lipid was shown to negate the impact of solvent selection.
Publication - Abstract
Nov 30, 2020
International Journal of Pharmaceutics
Publication - Abstract
May 27, 2017
Journal of Pharmaceutical Sciences
Lipid-polymer hybrid nanoparticles (NPs) are advantageous for drug delivery. However, their intracellular trafficking mechanism and relevance for oral drug absorption are poorly understood. In this study, self-assembled core-shell lipid-polymer hyb...