Biodegradable Amino-ester Nanomaterials for Cas9 mRNA Delivery in Vitro and in Vivo


Authors: X. Zhang, B. Li, X. Luo, W. Zhao, J. Jiang, C. Zhang, M. Gao, X. Chen and Y. Dong

Journal: ACS Applied Materials & Interfaces

DOI: 10.1021/acsami.7b08163

Publication - Abstract

July 07, 2017

Abstract:

Efficient and safe delivery of the CRISPR/Cas system is one of the key challenges for genome-editing applications in humans. Herein, we designed and synthesized a series of biodegradable lipidlike compounds containing ester groups for the delivery of mRNA-encoding Cas9. Two lead materials, termed N-methyl-1,3-propanediamine (MPA)-A and MPA-Ab, showed a tunable rate of biodegradation. MPA-A with linear ester chains was degraded dramatically faster than MPA-Ab with branched ester chains in the presence of esterase or in wild-type mice. Most importantly, MPA-A and MPA-Ab demonstrated efficient delivery of Cas9 mRNA both in vitro and in vivo. Consequently, these biodegradable lipidlike nanomaterials merit further development as genome-editing delivery tools for biological and therapeutic 

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Summary

Yizhou Dong’s group at Ohio State University have published a paper describing a small molecule/mRNA lipid nanoparticle combination therapy for triple negative breast cancer (TNBC). TNBC represents about 15% of all breast cancers. The Dong lab’s approach involved deli...
Read More


Publication - Summary

mRNA vaccines have the potential to tackle many unmet medical needs that are unable to be addressed with conventional vaccine technologies. A potent and well-tolerated delivery technology is integral to fully realizing the potential of mRNA vaccines. Pre-clinical and clinical stu...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.