Engineering Caveolae-Targeted Lipid Nanoparticles To Deliver mRNA to the Lungs


Authors: Q. Li, C. Chan, N. Peterson, R.N. Hanna, A. Alfaro, K.L. Allen, H. Wu, W.F. Dall'Acqua, M.J. Borrok and J.L. Santos

Journal: ACS Chemical Biology

DOI: 10.1021/acschembio.0c00003

Publication - Abstract

March 10, 2020

Abstract

Efficacious use of therapeutic gene delivery via nanoparticles is hampered by the challenges associated with targeted delivery to tissues of interest. Systemic administration of lipid nanoparticle (LNP)-encapsulated mRNA leads to a protein expressed predominantly in the liver and spleen. Here, LNP encapsulating mRNA was covalently conjugated to an antibody, specifically binding plasmalemma vesicle-associated protein (PV1) as a means to target lung tissue. Systemic administration of PV1-targeted LNPs demonstrated significantly increased delivery of mRNA to the lungs and a 40-fold improvement in protein expression in the lungs, compared with control LNPs. We also investigated the effect of LNP size to determine optimal tissue distribution and transfection. Larger-size PV1-targeted LNPs not only have the elasticity to target the PV1 expressed in the caveolae but also enable robust mRNA expression in the lungs. Targeted delivery of mRNA to the lungs is a promising approach in the treatment of lung diseases.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Summary

A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing

J. Finn, A. Smith, M. Patel, L. Shaw, M. Youniss, J. Heteren, T. Dirstine, C. Ciullo, R. Lescarbeau, J. Seitzer, R. Shah, A. Shah, D. Ling, J. Growe, M. Pink, E. Rohde, K. Wood, W. Salomon, W. Harrington, C. Dombrowski, W. Strapps, Y. Chang, D. Morrissey

Hereditary transthryretin amyloidosis is a rare disease caused by mutations in the gene encoding the protein transthyretin (TTR), causing it to misfold into amyloid plaques, leading to debilitating symptoms. In 2018,...

Read More


Publication - Summary

Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines Against H10N8 and H7N9 Influenza Viruses

K. Bahl, J.J. Senn, O. Yuzhakov, A. Bulychev, L.A. Brito, K.J. Hassett, M.E. Laska, M. Smith, Ö. Almarsson, J. Thompson and A.M. Ribeiro

The swine influenza pandemic of 2009 and more recent zoonotic transmissions of several avian influenza subtypes to human populations punctuates the threat posed by new pathogens for which we have no pre-existing immunity. Traditional vaccines requi...

Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.