Engineering, On‐demand Manufacturing, and Scaling‐up of Polymeric Nanocapsules


Authors: J. Crecente-Campo and M.J. Alonso

Journal: Bioengineering and Translational Medicine

DOI: 10.1002/btm2.10118

Publication - Abstract

September 17, 2018

Abstract

Polymeric nanocapsules are versatile delivery systems with the capacity to load lipophilic drugs in their oily nucleus and hydrophilic drugs in their polymeric shell. The objective of this work was to expand the technological possibilities to prepare customized nanocapsules. First, we adapted the solvent displacement technique to modulate the particle size of the resulting nanocapsules in the 50–500 nm range. We also produced nanosystems with a shell made of one or multiple polymer layers i.e. chitosan, dextran sulphate, hyaluronate, chondroitin sulphate, and alginate. In addition, we identified the conditions to translate the process into a miniaturized high‐throughput tailor‐made fabrication that enables massive screening of formulations. Finally, the production of the nanocapsules was scaled‐up both in a batch production, and also using microfluidics. The versatility of the properties of these nanocapsules and their fabrication technologies is expected to propel their advance from bench to clinic.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

In this work, a series of linear-dendritic poly(ethylene glycol) (PEG) lipids (PEG-GnCm) were synthesized through a strategy using sequential aza- and sulfa-Michael addition reactions. The effect of modulating the hydrophobic domain of linear-dendritic PEG lipids was systematical...
Read More


Publication - Abstract

Rapamycin-Loaded Biomimetic Nanoparticles Reverse Vascular Inflammation

C. Boada, A. Zinger, C. Tsao, P. Zhao, J.O. Martinez, K. Hartman, T. Naoi, R. Sukhoveshin, M. Sushnitha, R. Molinaro, B. Trachtenberg, J.P. Cooke, and E. Tasciotti

Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.