Phospholipid‐Free Small Unilamellar Vesicles for Drug Targeting to Cells in the Liver


Authors: W. Zhang, R. Böttger, Z. Qin, J.A. Kulkarni, J. Vogler, P.R. Cullis, and S-D. Li

Journal: Small

DOI: 10.1002/smll.201901782

Publication - Abstract

September 06, 2019

Abstract

It is reported that cholesterol (Chol) and TWEEN 80 at a molar ratio of 5:1 can form small unilamellar vesicles (SUVs) using a staggered herringbone micromixer. These phospholipid‐free SUVs (PFSUVs) can be actively loaded with a model drug for targeting hepatocytes via the endogenous apolipoprotein mechanism. PFSUVs particles with compositions of Chol:TWEEN 80 ranging between 1.5:1 and 5:1 (mol/mol) can be produced with a mean diameter of ≈80 nm, but only the high‐Chol formulations (3:1 and 5:1) can retain a transmembrane gradient of ammonium sulfate for active loading of doxorubicin (DOX). Under cryo‐transmission electron microscopy, PFSUVs‐DOX displays a unilamellar bilayer structure with DOX molecules forming spindle‐shape aggregates inside the aqueous core. Relative to PEGylated liposomal doxorubicin (PLD) that exhibits little interaction with cells in various conditions, the cellular uptake of PFSUVs‐DOX is dependent on the presence of serum and enhanced with an increased concentration of apolipoproteins. After intravenous injection, the vast majority of PFSUVs‐DOX accumulates in the liver and DOX is detected in all liver cells (predominantly the hepatocytes), while PLD is captured only by the sinusoidal cells (i.e., macrophages). This report discloses an innovative lipid bilayer vesicle for highly efficient and selective hepatocyte targeting.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Liposomes have been one of the most exploited drug delivery systems in recent decades. However, their large-scale production with low batch-to-batch differences is a challenge for industry, which ultimately delays the clinical translation of new products. We have investigated the...
Read More


Publication - Abstract

Liposomes used for the delivery of pharmaceuticals have difficulties scaling up and reaching clinical translation as they suffer from batch-to-batch variability. 
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.