Synthesis of Protein Conjugates Adsorbed on Cationic Liposomes Surface


Authors: D. Chatzikleanthous, R. Cunliffe, F. Carboni, M.R. Romano, D.T. O'Hagan, C.W. Roberts, Y. Perrie and R. Adamo

Journal: MethodsX

DOI: 10.1016/j.mex.2020.100942

Publication - Abstract

June 01, 2020

This paper refers to a previous publication.

Abstract

The well-known Toll like receptor 9 (TLR9) agonist CpG ODN has shown promising results as vaccine adjuvant in preclinical and clinical studies, however its in vivo stability and potential systemic toxicity remain a concern. In an effort to overcome these issues, different strategies have been explored including conjugation of CpG ODN with proteins or encapsulation/adsorption of CpG ODN into/onto liposomes. Although these methods have resulted in enhanced immunopotency compared to co-administration of free CpG ODN and antigen, we believe that this effect could be further improved. Here, we designed a novel delivery system of CpG ODN based on its conjugation to serve as anchor for liposomes. Thiol-maleimide chemistry was utilised to covalently ligate model protein with the CpG ODN TLR9 agonist. Due to its negative charge, the protein conjugate readily electrostatically bound cationic liposomes composed of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol and dimethyldioctadecylammonium bromide (DDA) in a very high degree. The novel cationic liposomes-protein conjugate complex shared similar vesicle characteristics (size and charge) compared to free liposomes. The conjugation of CpG ODN to protein in conjunction with adsorption on cationic liposomes, could promote co-delivery leading to the induction of immune response at low antigen and CpG ODN doses.


-The CpG ODN Toll-like receptor (TLR) 9 agonist was conjugated to protein antigens via thiol-maleimide chemistry.

-Due to their negative charge, protein conjugates readily electrostatically bound cationic liposomes composed of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol and dimethyldioctadecylammonium bromide (DDA) resulting to the design of novel cationic liposomes-protein conjugate complexes.

-The method is suited for the liposomal delivery of a variety of adjuvant-protein conjugates.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Microfluidics has been used to process self-assembling liposomal systems that are commonly considered for drug delivery applications. However, it has been found that the parameters of the process are not universally suited for all lipid types. We hypothesize here that size aggreg...
Read More


Publication - Abstract

Powassan virus (POWV) is an emerging tick-transmitted flavivirus that circulates in North America and Russia. Up to 5% of deer ticks now test positive for POWV in certain regions of the northern United States. Although POWV infections cause life-threatening encephalitis, there is...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.