Engineered Mutant α-ENaC Subunit mRNA Delivered by Lipid Nanoparticles Reduces Amiloride Currents in Cystic Fibrosis–based Cell and Mice Models


Authors: A. Mukherjee, K.D. MacDonald, J. Kim, M.I. Henderson, Y. Eygeris and G. Sahay

Journal: Science Advances

DOI: 10.1126/sciadv.abc5911

Publication - Abstract

November 18, 2020

Abstract

Cystic fibrosis (CF) results from mutations in the chloride-conducting CF transmembrane conductance regulator (CFTR) gene. Airway dehydration and impaired mucociliary clearance in CF is proposed to result in tonic epithelial sodium channel (ENaC) activity, which drives amiloride-sensitive electrogenic sodium absorption. Decreasing sodium absorption by inhibiting ENaC can reverse airway surface liquid dehydration. Here, we inhibit endogenous heterotrimeric ENaC channels by introducing inactivating mutant ENaC α mRNA (αmutENaC). Lipid nanoparticles carrying αmutENaC were transfected in CF-based airway cells in vitro and in vivo. We observed a significant decrease in macroscopic as well as amiloride-sensitive ENaC currents and an increase in airway surface liquid height in CF airway cells. Similarly, intranasal transfection of αmutENaC mRNA decreased amiloride-sensitive nasal potential difference in CFTRKO mice. These data suggest that mRNA-based ENaC inhibition is a powerful strategy for reducing mucus dehydration and has therapeutic potential for treating CF in all patients, independent of genotype.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Summary

A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing

J. Finn, A. Smith, M. Patel, L. Shaw, M. Youniss, J. Heteren, T. Dirstine, C. Ciullo, R. Lescarbeau, J. Seitzer, R. Shah, A. Shah, D. Ling, J. Growe, M. Pink, E. Rohde, K. Wood, W. Salomon, W. Harrington, C. Dombrowski, W. Strapps, Y. Chang, D. Morrissey

Hereditary transthryretin amyloidosis is a rare disease caused by mutations in the gene encoding the protein transthyretin (TTR), causing it to misfold into amyloid plaques, leading to debilitating symptoms. In 2018,...

Read More


Publication - Summary

Effective Lipidoid Nanoparticle Delivery In Vivo of siRNA Targeting Kappa Light Chain Production in a Murine Xenograft Model

X. Ma, P. Zhou, A. Kugelmass, D. Toskic, M. Warner, L.X. Lee, T. Fogaren, M. Wang, Y. Li, L. Yang, Q. Xu and R. Comenzo

Researchers at Tufts University have recently reported a proof of concept for siRNA-LNP treatment for AL amyloidosis - a bone marrow disorder where Immunoglobulin (Ig) light chains (LC) misfold into amyloids that deposit in a variety of other tissues where they cause disfunction ...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.