mRNA Vaccines Against H10N8 and H7N9 Influenza Viruses of Pandemic Potential Are Immunogenic and Well Tolerated in Healthy Adults in Phase 1 Randomized Clinical Trials


Authors: R.A. Feldman, R. Fuhr, I. Smolenov, A. Ribeiro, L. Panther, M. Watson, J.J. Senn, M. Smith, Ö. Almarsson, H.S. Pujar, M.E. Laska, J. Thompson, T. Zaks, and G. Ciaramella

Journal: Vaccine

DOI: 10.1016/j.vaccine.2019.04.074

Publication - Abstract

May 31, 2019

Abstract

Background

We evaluated safety and immunogenicity of the first mRNA vaccines against potentially pandemic avian H10N8 and H7N9 influenza viruses.

Methods

Two randomized, placebo-controlled, double-blind, phase 1 clinical trials enrolled participants between December 2015 and August 2017 at single centers in Germany (H10N8) and USA (H7N9). Healthy adults (ages 18–64 years for H10N8 study; 18–49 years for H7N9 study) participated. Participants received vaccine or placebo in a 2-dose vaccination series 3 weeks apart. H10N8 intramuscular (IM) dose levels of 25, 50, 75, 100, and 400 µg and intradermal dose levels of 25 and 50 µg were evaluated. H7N9 IM 10-, 25-, and 50-µg dose levels were evaluated; 2-dose series 6 months apart was also evaluated. Primary endpoints were safety (adverse events) and tolerability. Secondary immunogenicity outcomes included humoral (hemagglutination inhibition [HAI], microneutralization [MN] assays) and cell-mediated responses (ELISPOT assay).

Results

H10N8 and H7N9 mRNA IM vaccines demonstrated favorable safety and reactogenicity profiles. No vaccine-related serious adverse event was reported. For H10N8 (N = 201), 100-µg IM dose induced HAI titers ≥ 1:40 in 100% and MN titers ≥ 1:20 in 87.0% of participants. The 25-µg intradermal dose induced HAI titers > 1:40 in 64.7% of participants compared to 34.5% of participants receiving the IM dose. For H7N9 (N = 156), IM doses of 10, 25, and 50 µg achieved HAI titers ≥ 1:40 in 36.0%, 96.3%, and 89.7% of participants, respectively. MN titers ≥ 1:20 were achieved by 100% in the 10- and 25-µg groups and 96.6% in the 50-µg group. Seroconversion rates were 78.3% (HAI) and 87.0% (MN) for H10N8 (100 µg IM) and 96.3% (HAI) and 100% (MN) in H7N9 (50 µg). Significant cell-mediated responses were not detected in either study.

Conclusions

The first mRNA vaccines against H10N8 and H7N9 influenza viruses were well tolerated and elicited robust humoral immune responses.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

In the formulation of nanoparticles, poly(lactic-co-glycolic acid) (PLGA) is commonly employed due to its Food and Drug Administration and European Medicines Agency approval for human use, its ability to encapsulate a variety of moieties, its biocompatibility and biodegradability...
Read More


Publication - Summary

PTCD1 is Required for Mitochondrial Oxidative-phosphorylation: Possible Genetic Association with Alzheimer's Disease

D. Fleck, L. Phu, E. Verschueren, T. Hinkle, M. Reichelt, T. Bhangale, B. Haley, Y. Wang, R. Graham, D.S. Kirkpatrick, M. Sheng and B. Bingol

Using human genetic information and bioinformatics, Genentech have found a gene that is prominent in Azheimer’s Disease (AD) patients. In order to test molecular mechanism behind the gene's involvement in AD, they performed a functional study in rat neuronal cultures. Using...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.